Cat. No.: FTAQ-001

Fast Taq DNA Polymerase

(ETERBIO-EZ-FTAQ-001)

Lot:_____

Expiry Date: $\underline{yy} / \underline{mm} / \underline{dd}$ Store at -20°C

DESCRIPTION

Fast *Taq* DNA Polymerase is a second-generation enzyme engineered from *Thermus aquaticus* DNA polymerase, offering faster extension rates. In addition to speed, Fast *Taq* DNA Polymerase provides higher yields and sensitivity than wild-type *Taq* DNA polymerase across a broad range of targets. Fast *Taq* DNA polymerase has $5'\rightarrow3'$ DNA polymerase and $5'\rightarrow3'$ exonuclease activities that lacking a $3'\rightarrow5'$ exonuclease (proofreading) activity.

Origin

E. coli cells that carry the polA gene from Thermus aquatics

Specification

AppearanceColorless-liquidActivity $\geq 5 \text{ U/}\mu l$

Functions

Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1), 5'-3' polymerase and 5'-3' exonuclease, DNA repair, recombination and replication

Reagents Supplied with Enzyme

10X Eternal Taq Reaction Buffer

PROPERTIES

Unit Definition One unit is defined as the amount of enzyme that synthesizes 1 nmol of DNA within 3 minutes at 72°C

Unit Assay Conditions

1X Eternal Taq Reaction Buffer, 125 µM dNTPs and 15 nM primed M13 DNA

1X Eternal Taq Reaction Buffer

10 mM Tris-HCl (pH 8.8), 50 mM KCl, 1.5 mM MgCl₂, 0.1% Triton X-100

Storage Buffer

20 mM Tris-HCl (pH 8.0), 100 mM KCl, 1 mM DTT, 0.1 mM EDTA, 0.5% Tween[®] 20, 50% Glycerol

Molecular Weight Theoretical: 97,000 daltons

Storage

Store at -20℃

Functional Assay

Good performance in PCR was tested for amplification of 1.8 kb gene.

USAGE

- 1. Gently vortex and briefly centrifuge Fast Taq DNA Polymerase after thawing.
- 2. Set up each reaction as follows (Keep on ice):

Component	50 µl reaction	Final Concentration
10X Fast Taq Reaction Buffer	5 µl	1X
Primer A	variable	0.1–1.0 μM
Primer B	variable	0.1–1.0 μM
dNTPs	variable	200 µM
Template DNA	variable	< 1.0 µg
Fast Taq DNA Polymerase	0.5 µl	2.5 U/50 µl PCR
Nuclease-free water	to 50 µl	

3. Gently mix the solution a few times and spin down.

4. Perform PCR using the recommended thermal cycling conditions outlined below:

(For maximum yield and specificity, temperatures and cycling times should be optimized for each new template target or primer pair)

Step	Temperature	Time
Initial Denaturation	95°C	3 minutes
30 Cycles	95°C	15-30 seconds
	45-68°C	15-30 seconds
	72°C	1-15 seconds/kb
Final Extension	72°C	1 minute/kb
Hold	4-10°C	

Mg^{2+} and additives

The optimal Mg^{2+} concentration of 1.5 mM empirically, as provided in the 1X Fast *Taq* Reaction Buffer, will generate satisfactory amplification of most amplicons. However, in some difficult targets, Mg^{2+} can be improved by increasing 0.5-1.5 mM. Amplification of some cases, reactions may be improved with additives, like DMSO.